Candidate Strategies to Reduce Risks in Large Engineering & Construction Programs

By Bob Prieto

Every large engineering and construction program is different as are the risks it faces. There are no silver bullets for managing and reducing risks in these large programs but there are some recurrent strategies. This paper lays out some candidate strategies organized from a "Triple Bottom Line" or sustainability perspective.

I have chosen this sustainability framework in recognition that a more holistic, life-cycle approach is characteristic in these emerging "giga" programs and consistent with the strategic program management approach I have written about previously.

Not every candidate strategy is viable, necessary or desirable on every large engineering and construction program. Nor is the list of such strategies complete. The purpose of this article is to get the reader started on the process of identify strategic options and tactics to reduce the risks that a major program faces.

While many risks will be driven by externalities, internal performance based risks should not be ignored as they represent some of the greatest risks in the successful delivery of any large scale program. This can be seen in the following figure.

Let's look at these risks and potential candidate strategies utilizing the following sustainability framework:

- Economic
- Social
- Environmental
- Management

Economic

Sustainable program dimensions from an economic perspective include:

- Labor Availability & Cost
- Labor Productivity
- Labor Impacts on Program Location
- Material Availability & Cost
- Long Lead Equipment
- Construction Equipment
- Logistical Costs
- Life Cycle Costs
- Relocation or Reconfiguration Costs
- Industry Creation
- Balance Sheet
- Risk & Insurance Costs

Each of these dimensions lends itself to one or more candidate strategies to reduce risks in large engineering and construction programs.

Table 1 looks at each of these dimensions and suggests candidate strategies for consideration.

Table 1 Candidate Strategies to Reduce Risks in the Economic Dimension from a Sustainability Framework Perspective		
Sustainable Program Dimension	Candidate Strategies	
Labor Availability & Cost	Module construction in labor rich, low cost	
	location; maximize manhour density in	
	modules shipped	
	Aggressive pre-fabrication and pre-assembly	
	strategies	
	Use of global engineering centers	
	Specific candidate strategies for	
	modularization, pre-fabrication and pre-	

PM World Journal

assembly include:
Precast underground duct
hanks
Drocast electrical and telecom
puil boxes
Maximize steel fabrication to
complete assemblies (stair
towers, access platforms)
Pipe support.
electrical/instrumentation
stanchions all prefabricated and
assombled
Ianks shop built
 Prefabricated electrical vaults,
telecoms buildings, and control
rooms
Standardized electrical vault
cable tray runs and
preassemble (or include in
modules as appropriate)
Induces as appropriate)
Underground pipes spooled to
80 foot lengths, coated, and
tested
 Precast concrete sumps and
pipe trenches
Maximize size of vendor skids
to include all piping, electrical,
and controls
Preassemble any overhead
crapos pot incorporated in
modules
modules
All remote pumps mounted on
common skids and pre-piped
with all controls
Precast road crossings for pipe
or cable
Warehouse and workshop as
fold-away type buildings with
internal frame for overhead
Camp buildings fully modular,
including mess hall
Precast and preassemble any
haul road bridges required
Water treatment skids

	 Tilt-up construction for any electrical fire separation walls Precast any temporary building foundations Conveyors completely preassembled, including cable trays, walks, ladders railings, etc. Conveyor bents fabricated in largest transportable sections Temporary power skid mounted Temporary, floating dormitory Modular construction camp housing Modular wharf Standardized modular plant buildings Floating dosalination facilities Floating power plants
Labor Productivity	More detailed and earlier construction planning integrated into Master Schedule. Emphasis will be identifying coupled constraints (labor, materials, equipment, logistics, etc) Early craft training for unique skill sets
	required by the various projects comprising the program.
	Comprehensive skill based labor needs and availability assessment.
	final program location when to the program's benefit (example would be a module yard)
	3D design of modular portions of design to enhance module construction and subsequent relocation of modules if so required
	Protyping of highly repetitive modules or key program elements Establishment of a owner owned module yard
	in a favorable location that would be available to the various project contractors
	Designs will optimize execution not design while meeting requisite criteria.

	Embed architect and engineer in field during
	critical construction operations.
	Dates established for scope and design freeze
	to minimize impact of changes
	Industry leading safety program recognizing its
	impact on site productivity.
Labor Impacts on Program Location	Maximize low value, high impact construction
	accomplished by pre-fabrication, assembly and
	modularization outside final program location.
Material Availability & Cost	Maximize standardization across projects to
	simplify supply chain and gain purchasing
	leverage
	Put in place select strategic supplier
	relationships for major material supply
	categories.
	Broad multi-project procurement strategies to
	be considered include:
	bigb value major process
	equinment utilized in multiple
	projects or across multiple
	program phases
	large quantities of supporting
	equipment (pumps, motors
	control valves, signals,
	switches)
	bulk plant materials (piping
	valving, cabling, stairways,
	windows, ladders, grading,
	roofing, doors, coordinated
	architectural details or finishes)
	materials of construction (steel,
	concrete, aggregate)
	construction consumables (fuel.
	formwork, safety supplies)
	non process infrastructure
	(camp housing, supporting
	camp facilities, culverts,
	administrative or other
	temporary buildings, concrete
	chases)
	Logistical services (heavy
	marine, railroad, trucking,
	expediting, customs, permits,
	specialized transport)

	Miscellaneous construction services (temporary power, canteen, sanitary, waste disposal, security, construction vehicle maintenance)
	Identify risks best retained and managed by owner than in individual projects. Strategies include use of commodity hedges, exchange rate risk retention (FOREX) and hedging, wrap up insurance policies either by owner or contractors.
	Risk arbitrage strategies include: •Fuel cost hedges •Heavy marine transport hedges •Currency hedges •Aluminum hedge •Iron Ore and Metallurgical Coal hedges (steel surrogate)
	Use of more extensive client furnished materials program to secure market pricing and delivery leverage; reduce contractor risk provisions and markups associated with such materials.
Long Lead Equipment	Strategic suppliers engaged in the front end engineering process.
Construction Equipment	Construction equipment forecast and evaluation of assured supply
Logistical Costs	Embed a technical translation function in offshore construction sites.
	Material handling wharfs to avoid handling delays at port main facilities
	"Possessions" of critical infrastructure for transport managed
	Logistical requirements forecast
Life Cycle Costs	Incorporate consumable cost risks and volatility into life cycle evaluations
	Develop approaches that maximize end of life value (re-use; alternative use; recovery of valuable materials facilitated)
Relocation or Reconfiguration Costs	Construct high value facilities in module sizes and weights that lend themselves to transport to future program elements (example: mine

	crushing and screening facilities and sampling stations relocatable to future mine sites)
Industry Creation	Capacity development program coupled with mentor-protégé contracting
Balance Sheet	Acquire select program elements on a non CAPEX basis (DBOM; PPP; delivered service.)
	Candidates include: • Specialty equipment with
	strong technical maintenance component or desired
	 Non process infrastructure best treated as part of operating cost vs. consuming limited CAPEX (site based housing, power generation, water treatment) Non process infrastructure which lends itself to compariso
	of scale by serving multiple programs (offsite power; desalination; wastewater treatment; housing; community facilities; medical facilities)
	 Common carrier facilities such as pipelines; transmission lines; communication backbones Logistics facilities best delivered on a multi-user basis (railroad; port & wharf facilities)
Risk & Insurance Costs	 Self insured, pooled risk reserves: Worker's Comp risks Property risk Vehicle risks Escalation risks in select commodities Benefit & welfare program risks Builder's Risk Environmental Risk Sovereign and regulatory risks

Social

Sustainable program dimensions from a social perspective include:

- Procurement and contractual frameworks
- Craft capacity building
- Management capacity building
- Global leading best practices
- Societal supporting facilities
- Managing uncontrollable growth
- Performance management

Table 2 looks at each of these dimensions and suggests candidate strategies for consideration.

Table 2		
Candidate Strategies to Reduce Risks in the Social Dimension from a Sustainability Framework Perspective		
Sustainable Program Dimension	Candidate Strategies	
Procurement & Contractual Frameworks	Transparent procurement system and process available to and required to be used by all project contractors	
	Partnership Against Corruption Initiative (PACI)	
	Modern Terms & Conditions reflecting appropriate risk allocation	
	Streamlined contract change process to avoid delays	
Capacity Building – Craft	Early craft training for unique skill sets required by the various facilities.	
	Comprehensive skill based labor needs and availability assessment to be undertaken.	
Capacity Building - Management	Skill requirements definition and management training focused on program and project management	
	Mentor-protégé relationships with executives from outside the program team	
	Task force assignments to gain deep exposure to new areas	
Global Leading Best Practices	Industry leading best practices on safety recognizing the value of a human life	
	Confirmation of sustainability program as global best practice	

Contrated Composition Facilities	Contract with offerted statished along merups for
Societal Supporting Facilities	Contract with affected stakeholder groups for
	delivery
Manage Uncontrollable Growth	Early and ongoing labor and logistical
	requirements forecasts including forecast of
	indirect human (accompanying persons and
	families: service labor demand induced by
	program labor force) and logistical demands
	(transport, travel, housing, power, water,
	food, sanitary demands by accompanying
	persons, families and service labor)
	Location of work sites at distributed locations
	when possible including execution of work at
	pre-assembly, pre-fabrication or module yards
	at remote locations.
	Limiting new permanent facilities to those
	consistent with longer term growth plans.
	Limited licensing of industrial supporting
	facilities not desired post construction.
	Operating needs must be factored into such
	limitations.
Performance Measurement	Early PMC issuance of common "social"
	bottom line metrics

Environmental

Sustainable program dimensions from an environmental perspective include:

- Waste streams
- Energy
- Water
- Recyclable/reusable materials

Table 3 looks at each of these dimensions and suggests candidate strategies for consideration.

Table 3		
Candidate Strategies to Reduce Risks		
in the		
Environmental Dimension		
from a		
Sustainability Framework Perspective		
Sustainable Program Dimension	Candidate Strategies	

Waste Streams - General	On-site use of select waste streams (heat, water, compostable materials)
	Pre-fabrication, pre-assembly and modularization as strategies to "leave waste streams behind"
Energy	Waste energy use for central heating or cooling of nearby housing or community facilities
	Implement energy reducing strategies during construction.
	 Specific strategies include: Consolidated shipments to the site Renewable energy to meet onsite construction power needs Use of micro grids Onsite power storage of excess generation Cut and fill balancing Reduced number of lifts and working at height Energy control devices to shut off idle equipment Proper maintenance of heavy equipment Improved insulation of camp facilities Waste stream reduction to reduce handling and transport of waste streams Use of natural heat sinks Incorporation of shipping reinforcement in final module design (no removal; no waste transport) Emphasis on efficient laydown areas Improved workface planning

Water	Select grey water use for agriculture
	Minimize potable water use during construction•Runoff water capture•Use of grey water in wash down operations•Use of grey water in concrete manufacture•Use of grey water in dust control operations•Use of grey water for landscaping operations•Use of grey water for landscaping operations•Use of grey water for fire protection operations•Use of reclaimed water as makeup water in select power and process applications•Separate potable, grey water and blackwater systems at construction sites•Wastewater (blackwater) mining with limited treatment for use in grey water applications
Recyclable/ Reusable Materials	Scrap recycling (wood, metals, packing materials)
	Specification of recyclable packaging materials

Management

While not a sustainability dimension per se, management's cross cutting nature warrants a separate callout in Table 4 as it relates to candidate strategies to reduce risks in large engineering and construction programs. Many more traditional strategies exist and have not been repeated here. Rather, some less frequently considered strategies have been called out.

Management Dimension	
from a	
Sustainabili	ty Framework Perspective
Sustainable Program Dimension	Candidate Strategies
¥	
Management	Dedicated client elements embedded within
	the PMO
	Salt and Pepper organizational approach to
	foster management development within the
	client organization while maintaining
	independent PMO role within client.
	Cross cultural training given the nature of the
	program and the global supply chain it will
	require
	Time lapse photography to document progress
	and support subsequent marketing efforts.
	Select use of IMAX photography for program
	marketing if a public or high profile program.
	Actively capture procurement and
	construction lessons learned and make
	available to all program contractors in an
	appropriate manner
	Address multiple site document control needs
	to meet owner requirements.
	early clarity of applicable codes, standards
	Augmented supplier quality assurance and
	Augmented supplier quality assurance and audits by the PMC
	Poblist progress management standard and
	audit
	Startup readiness risk assessment and
	planning initiated at outset of program
	Tollgate process drives schedule
	Knowledge management program initiated
	across all projects
	Early and ongoing stakeholder engagement
	and management

ABOUT THE AUTHOR

Bob Prieto

Author

Bob Prieto is a senior vice president of Fluor, one of the largest, publicly traded engineering and construction companies in the world. He is responsible for strategy for the firm's Industrial & Infrastructure group which focuses on the development and delivery of large, complex projects worldwide. The group encompasses three major business lines including Infrastructure, with an emphasis on Public Private Partnerships; Mining; and Manufacturing and Life Sciences.

Bob consults with owner's of large engineering & construction capital construction programs across all market sectors in the development of programmatic delivery strategies encompassing planning, engineering, procurement, construction and financing. He is author of "Strategic Program Management" and "The Giga Factor: Program Management in the Engineering and Construction Industry" published by the Construction Management Association of America (CMAA) and "Topics in Strategic Program Management" as well as over 400 other papers and presentations.

Bob's industry involvement includes recent and ongoing roles on the National Infrastructure Advisory Council's Critical Infrastructure Resiliency Workgroup and the National Academy Committee "Toward Sustainable Critical Infrastructure Systems: Framing the Challenges". He is a member of the ASCE Industry Leaders Council, National Academy of Construction and a Fellow of the Construction Management Association of America.

Bob served until 2006 as one of three U.S. presidential appointees to the Asia Pacific Economic Cooperation (APEC) Business Advisory Council (ABAC), working with U.S. and Asia-Pacific business leaders to shape the framework for trade and economic growth and had previously served as both as Chairman of the Engineering and Construction Governors of the World Economic Forum and co-chair of the infrastructure task force formed after September 11th by the New York City Chamber of Commerce.

Previously, as a senior industry executive, he established a 20-year record of building and sustaining global revenue and earnings growth. As Chairman at Parsons Brinckerhoff (PB), one of the world's leading engineering companies, Bob shaped business strategy and led its execution. Bob Prieto can be contacted at Bob.Prieto@fluor.com.